La interpretación más aceptada del teorema de Bayes, es que su estructura permite el calculo de probabilidades después de haber sido realizado un experimento (probabilidades aposteriori), basándose en el conocimiento de la ocurrencia de ciertos eventos que dependan del evento estudiado, o sea, se parte de probabilidades conocidas antes de efectuar el experimento (probabilidades apriori), las cuales son afectadas por las probabilidades propias del experimento (las que aparecen durante la ocurrencia del evento).
Continuando nuestro análisis sobre el teorema de Bayes, la probabilidad condicional de Ai dado B, para cualquier i, es:
Aplicando en el numerador la Regla de Multiplicación P(AiÇB) = P(Ai) P(B|Ai) y en el denominador el Teorema de Probabilidad Total P(B) = P(A1) P(B | A1) + P(A2) P(B | A2) + . . . + P(An) P(B | An), obtenemos la ecuación que representa al:
Teorema de Bayes
Ejemplo 3. 11. Referente al problema de la fábrica que produce dos tipos de reguladores A y B visto anteriormente en la aparte corresponde al Teorema de Probabilidad Total, cabe hacer el siguiente análisis: si se selecciona un regulador al azar de la producción de la fábrica y se ve que funciona bien ¿Cuál es la probabilidad de que sea del tipo B?
Solución
En este caso el estudio se restringe a los reguladores que funcionan bien, por lo que ese evento actúa como espacio muestral reducido, o sea como evento condición. Por lo tanto, el planteamiento de la pregunta es P(B | F).
Los datos que se tienen son :
P(A) = 0.75 P(F | A) = 0.95
P(B) = 0.25 P(F | B) = 0.98
De acuerdo al Teorema de Bayes:
Podemos observar que el denominador corresponde al resultado obtenido al aplicar el Teorema de Probabilidad Total, lo cual debe ser así, ya que la probabilidad condicional establece que . De esta forma podemos ver que la Probabilidad
Total es el denominador de la fórmula del Teorema de Bayes. También podemos observar que aplicando los conceptos de la Regla de Multiplicación y del Teorema de Probabilidad Total llegamos al planteamiento del teorema de Bayes, Veamos:
Ejemplo 3. 12. Una fábrica que produce material para la construcción tiene 3 máquinas, a las que se les denomina A, B y C. La máquina A produce tabique, la B adoquín y la C losetas. La máquina A produce el 50% de la producción total de la fábrica, la B el 30% y la C el 20%. Los porcentajes de artículos defectuosos producidos por las máquinas son, respectivamente, 3%, 4% y 5%. Si se selecciona un artículo al azar y se observa que es defectuoso, encontrar la probabilidad de que sea un tabique.
Solución
Definamos el evento D como sea un artículo defectuoso. De acuerdo a esto tenemos que:
P(A) = 0.5 P(D | A) = 0.03
P(B) = 0.3 P(D | B) = 0.04
P(C) = 0.2 P(D | C) = 0.05
Si el artículo del que deseamos calcular la probabilidad es un tabique, significa que es producido por la máquina A. También observamos que en la solución solamente participan los artículos defectuosos, ya que se pone por condición esta característica. Por lo tanto:
Ejemplo 3. 13. A un congreso asisten 100 personas, de las cuales 65 son hombres y 35 son mujeres. Se sabe que el 10% de los hombres y el 6% de las mujeres son especialistas en computación. Si se selecciona al azar a un especialista en computación ¿Cuál es la probabilidad de que sea mujer?
Solución
Definamos los eventos:
H: Sea un hombre
M: Sea una mujer
E: La persona sea especialista en computación
Tenemos que:
Por lo tanto: